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1. Introduction

Why considering double (multiple) categories?

I 1. Adjunctions. In a higher dimensional adjunction, the left
adjoint is colax and the right one is lax

I - they cannot be composed, but can be viewed as a vertical or
horizontal arrow, in a double category

I 2. Limits. In dimension 2, many bicategories (of relations,
spans, cospans, profunctors) have few limits and colimits
but can be viewed as the vertical part of weak double
categories with all double limits and colimits

I - in higher (also infinite) dimension, we have:

– weak multiple categories of cubical spans or cospans,

– chiral multiple categories of spans and cospans, etc.

with all multiple limits and colimits
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2. A problem with adjunctions

Exponential law F a G in Ab, for a fixed abelian group A

F : Ab� Ab : G , F (X ) = X ⊗ A, G (Y ) = Hom(A,Y )
or any adjunction F a G between abelian categories

Extending F ,G to RelAb (locally ordered 2-category) we get:

F ′ = Rel(F ) : RelAb→ RelAb, F ′(vu) 6 F ′(v).F ′(u) (colax)

G ′ = Rel(G ) : RelAb→ RelAb, G ′(v).G ′(u) 6 G ′(vu) (lax)

working on jointly-monic spans and jointly-epic cospans

Extending the adjunction makes problems

- We cannot compose F ′ and G ′

- What do we make of unit and counit?
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3. The extension

We ‘amalgamate’ Ab and RelAb in the double category RelAb:

A
f //

•u
��

A′
•v
��

f , g homomorphisms

6 u, v relations

B g
// B ′ gu 6 vf (flat cells)

F ,G can be extended to ‘double functors’ RelAb→ RelAb:

F ′′ = Rel(F ) (colax), G ′′ = Rel(G ) (lax)

F ′′ and G ′′ are orthogonal adjoints in Dbl (X = A = RelAb)

X
•

F ′′ ��

X A G ′′ // X
•
F ′′��

η

ε
= 1F ′′

η ε

A
G ′′
// X A A ε | η = eG ′′
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4. The double category Dbl of weak double categories

A F //

•U

��

πrr

B
•
V

��

F ,G lax functors horizontal arrows

U,V colax functors vertical arrows

C
G
// D π : VF 99K GU a cell (abuse of notation)

π has: horizontal maps πA : VFA→GUA and cells πu : VFu→GUu in D

VFA
πA //

•VFu

��

GUA

•
GUu

��
πu (for u : A ·→A′ in A)

VFA′
πA′

// GUA′

Coherence conditions (besides naturality) for A and w = u ⊗ v in A:

(V F A |πeA |G UA) = (V FA | eπA |G UA)

(V F (u, v) |πw |G U(u, v)) = (V (Fu,Fv) | (πu ⊗ πv) |G (Uu,Uv))
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5. The second coherence condition (for vertical composition)

- based on the laxity comparisons F ,G (of F ,G ) and
the colaxity comparisons U,V (of U,V ), for w = u ⊗ v in A

(V F (u, v) |πw |G U(u, v)) = (V (Fu,Fv) | (πu ⊗ πv) |G (Uu,Uv))

VFA
•V (Fu⊗Fv)
��

VFA //

•VFw

��

GUA
•

GUw
��

GUA
•G(Uu⊗Uv)
��

V F πw G U

VFA′′ VFA′′ // GUA′′ GUA′′

VFA

•V (Fu⊗Fv)

��

VFA //

•VFu
��

GUA
•

GUu
��

GUA

•G(Uu⊗Uv)

��

πu

V F VFA′ //

•VFv
��

GUA′

•
GUv
��

G U

πv

VFA′′ VFA′′ // GUA′′ GUA′′



6. Double adjunctions and their composition

(η, ε) : F a G orthogonal adjunction in Dbl

X
•

F
�� ηnn

X A G //

εnn
X
•
F
��

η

ε
= 1F

A
G
// X A A ε | η = eG

Composition with (η′, ε′) : H a K (pasting units and counits in Dbl )

X
•F
��

X
•F
�� ηoo

X B K // A G //

εoo
X
•F
��1 e

A
•H
�� η′
oo

A G // X B K //

ε′
oo

A
•H
��

A
•H
��e 1

B
K
// A

G
// X B B B

(Pseudo-lax adjunction: in the 2-category LxDbl = HorDbl)
(Colax-pseudo adjunction: in the 2-category CxDbl = Ver∗Dbl)
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7. Limits and colimits
The double category RelAb has all double limits and colimits
(the 2-category RelAb even lacks products and a terminal object)

A family of relations ui : Ai ·→ Bi (i ∈ I ) has an obvious product

u : A ·→ B, u = {((ai ), (bi )) | (ai , bi ) ∈ ui , for i ∈ I}

with projection cells πi that satisfy the obvious universal property

A
pi //

•u
��

Ai
•ui
��

A =
∏

iAi

6

B qi
// Bi B =

∏
iBi

vertical arrows are viewed as higher-dimensional objects.

The existence of functorial double products in RelAb means that:
- the category of horizontal arrows (i.e. Ab) has products,
- the category of vertical arrows and double cells has products,
- these solutions agree w.r.t. vertical (co)domain and identities.
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8. Another adjunction which only makes sense in Dbl

The weak double categories SpanC and CospC:
α : u → v : ∨→ C α : u → v : ∧ → C

on a category C with pullbacks and pushouts

X
f // X ′ X

f //

u′ ��
X ′

v ′
��

U
mα //

u′
EE

u′′ ��
V

v ′
EE

v ′′
��

U
mα // V

Y g
// Y ′ SpanC Y g

//

u′′
EE

Y ′
v ′′
EE

CospC

The pushout-pullback adjunction, trivial on objects and hor. arr.:

F : SpanC� CospC : G (F colax ,G lax)

F acts on spans by pushout, G acts on cospans by pullback
We cannot compose them: we have an adjunction in Dbl
Restricting to the bicategories: still an adjunction in Dbl.
(SpanC has all double (co)limits, if C has (co)limits)
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9. The pushout-pullback adjunction and abelian relations

Extending pseudo-lax adjunctions:

A double adjunction F a G is left strong if:

(i) the comparison cells of F are made invertible by applying G

(ii) the ‘sesqui-functor’ T = GF becomes a lax functor
(with the composed comparisons)

Theorem. This produces a lax monad T on the domain of F

- if C is abelian, the po/pb adjunction is strong (left and right)
→ idempotent lax monad T on SpanC: Alg(T ) = RelC
→ idempotent colax comonad S on CospC: Coalg(S) = RelC

- if C = Set, the pushout-pullback adjunction is not strong

(RelSet = Alg(T ′) for the jointly-monic monad T ′ on SpanSet)
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10. Weak multiple categories

The weak multiple category SpanSet (of cubical type)

- an n-dimensional cube is a functor x : ∨n → Set
with 2n faces: ∂αi x : ∨n−1 → Set (i = 1, ..., n; α = ±)
- for instance π : ∨2 → Set has four faces f , g , u, v (spans)

• •
f ′oo f ′′ // •

•
f //

u

��

•

v

��

•
1
//

2 ��

0 >>

•

u′

OO

u′′

��

•
π1oo π2 //

π3

OO

π4

��

•

v ′

OO

v ′′

��
•

g
//

π

•

• •
g ′
oo

g ′′
// •

- transversal map ϕ : x → y : ∨n → Set (a natural transformation)

- they compose strictly (in direction 0, the transversal direction)

- and give the comparisons for the i-composition of n-cubes.
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11. Extending adjunctions to weak multiple categories

The weak multiple category SpanSet (of cubical type)

The weak multiple category CospSet (of cubical type)

- an n-dimensional cube is a functor x : ∧n → Set
- a transversal map ϕ : x → y is a natural transformation

The colax-lax multiple adjunction, by pushouts and pullbacks:

F : SpanSet� CospSet : G (F colax ,G lax)

which lives in a double category of weak multiple categories.

(SpanSet and CospSet have all multiple limits and colimits.)
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12. Hints at chiral multiple categories (in dim. 3)

The chiral triple category SC(C) (not of cubical type)

for a category C with pullbacks and pushouts

- a 1-cell f : ∨→ C is a span, a 2-cell u : ∧→ C is a cospan,
- a 12-cell π : ∨×∧→ C is a span of cospans (or a cospan of spans)

•

u′

��

•
f ′oo f ′′ //

c ′π

��

•

v ′

��
•

f //

u

��

•

v

��
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1
//

2 ��

0 >>

• •
s′πoo s′′π // •

•
g
//

π

•

•

u′′

OO

•
g ′
oo

g ′′
//

c ′′π

OO

•

v ′′

OO

- a transversal map ϕ : π → ρ is a natural transformation (dim. 3)
Directed interchange for 1- and 2-directed compositions
χ(π, π′, ρ, ρ′) : (π +1 π

′) +2 (ρ+1 ρ
′)→ (π +2 ρ) +1 (π′ +2 ρ

′).
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13. Extending adjunctions to chiral multiple categories

In dim. 3, the colax-lax adjunction of weak triple categories

F : Span3(C)� Cosp3(C) : G F a G

factorises by colax-lax adjunctions of chiral triple categories

Span3(C)
F ′ // SC(C)
G ′
oo

F ′′ // Cosp3(C)
G ′′
oo

In infinite dimension: the chiral ‘unbounded’ category S−∞C∞(C)
- spans of C in each negative direction
- ordinary maps in direction 0
- cospans in positive directions.

Multiple adjunctions of chiral multiple categories:

SpanZ(C) � S−∞C∞(C) � CospZ(C)

in a double category of chiral categories, lax and colax functors.
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14. Strict multiple categories (A. & C. Ehresmann)

Multiple set A (in SetM
op

):

- a set Ai, for every (finite) multi-index i = {i1, ..., in} ⊂ N
- faces: ∂αi : Ai → Ai|i , for i ∈ i, α = ± (i|i = i \ {i})
- degeneracies: ei : Ai|i → Ai, for i ∈ i

under the multiple relations (i 6= j):

∂αi .∂
β
j = ∂βj .∂

α
i , ei .ej = ej .ei ,

∂αi .ej = ej .∂
α
i , ∂αi .ei = id.

Strict multiple category A:
a multiple set with (strict) compositions and interchange
- i-composition: x +i y , for i ∈ i, x , y ∈ Ai, ∂

+
i x = ∂−i y .
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under the multiple relations (i 6= j):

∂αi .∂
β
j = ∂βj .∂

α
i , ei .ej = ej .ei ,

∂αi .ej = ej .∂
α
i , ∂αi .ei = id.

Strict multiple category A:
a multiple set with (strict) compositions and interchange
- i-composition: x +i y , for i ∈ i, x , y ∈ Ai, ∂

+
i x = ∂−i y .
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15. Multiple categories, weak and lax

Weak multiple category:

- the 0-composition is categorical (the transversal direction)

- i-composition in a geometric direction i > 0:
categorical up to transversal invertible comparisons

- strict interchange of the transversal composition with any other
- ij-interchanger: a transversal invertible comparison (0 < i < j)

χij(π, π
′, ρ, ρ′) : (π +i π

′) +j (ρ+i ρ
′)→ (π +j ρ) +i (π′ +j ρ

′)

Chiral multiple category (partially lax):
- ij-interchanger: a transversal directed comparison (0 < i < j)

Intercategory (a laxer version):
- four ij-interchangers, for binary and zeroary compositions in
directions i < j
in dimension 3, intercategories include:
duoidal categories, monoidal double categories, cubical
bicategories, double bicategories, Gray categories
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16. The multiple site M

The multiple site M has an object 2i = Set(i, 2)
for every (finite) multi-index i ⊂ N (elements: t : i→ 2).

The category M ⊂ Set is generated by the following mappings

(i ∈ i, i 6= j , α ∈ 2, i|i = i \ {i}, j ∈ i|i)

faces: ∂αi : 2i|i → 2i, (∂αi t)(j) = t(j), ∂αi (t)(i) = α

degeneracies: ei : 2i|i → 2i, (ei t)(j) = t(j)

under the comultiple relations (i 6= j):

∂αi .∂
β
j = ∂βj .∂

α
i , ei .ej = ej .ei ,

∂αi .ej = ej .∂
α
i , ei .∂

α
i = id.

(The cubical site has objects 2n; its indices must be normalised.)
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